14,606 research outputs found

    A stochastic model for multivariate surveillance of infectious diseases

    Get PDF
    We describe a stochastic model based on a branching process for analyzing surveillance data of infectious diseases that allows to make forecasts of the future development of the epidemic. The model is based on a Poisson branching process with immigration with additional adjustment for possible overdispersion. An extension to a space-time model for the multivariate case is described. The model is estimated in a Bayesian context using Markov Chain Monte Carlo (MCMC) techniques. We illustrate the applicability of the model through analyses of simulated and real data

    Correlated-Electron Theory of Strongly Anisotropic Metamagnets

    Full text link
    We present the first correlated-electron theory of metamagnetism in strongly anisotropic antiferromagnets. Quantum-Monte-Carlo techniques are used to calculate the field vs. temperature phase diagram of the infinite-dimensional Hubbard model with easy axis. A metamagnetic transition scenario with 1.~order and 2.~order phase transitions is found. The apparent similarities to the phase diagram of FeBr2_2 and to mean-field results for the Ising model with competing interactions are discussed.Comment: 4 pages, RevTeX + one uuencoded ps-file including 3 figure

    Streamline integration as a method for structured grid generation in X-point geometry

    Get PDF
    We investigate structured grids aligned to the contours of a two-dimensional flux-function with an X-point (saddle point). Our theoretical analysis finds that orthogonal grids exist if and only if the Laplacian of the flux-function vanishes at the X-point. In general, this condition is sufficient for the existence of a structured aligned grid with an X-point. With the help of streamline integration we then propose a numerical grid construction algorithm. In a suitably chosen monitor metric the Laplacian of the flux-function vanishes at the X-point such that a grid construction is possible. We study the convergence of the solution to elliptic equations on the proposed grid. The diverging volume element and cell sizes at the X-point reduce the convergence rate. As a consequence, the proposed grid should be used with grid refinement around the X-point in practical applications. We show that grid refinement in the cells neighboring the X-point restores the expected convergence rate

    The influence of temperature dynamics and dynamic finite ion Larmor radius effects on seeded high amplitude plasma blobs

    Get PDF
    Thermal effects on the perpendicular convection of seeded pressure blobs in the scrape-off layer of magnetised fusion plasmas are investigated. Our numerical study is based on a four field full-F gyrofluid model, which entails the consistent description of high fluctuation amplitudes and dynamic finite Larmor radius effects. We find that the maximal radial blob velocity increases with the square root of the initial pressure perturbation and that a finite Larmor radius contributes to highly compact blob structures that propagate in the poloidal direction. An extensive parameter study reveals that a smooth transition to this compact blob regime occurs when the finite Larmor radius effect strength, defined by the ratio of the magnetic field aligned component of the ion diamagnetic to the E⃗×B⃗\vec{E}\times\vec{B} vorticity, exceeds unity. The maximal radial blob velocities agree excellently with the inertial velocity scaling law over more than an order of magnitude. We show that the finite Larmor radius effect strength affects the poloidal and total particle transport and present an empirical scaling law for the poloidal and total blob velocities. Distinctions to the blob behaviour in the isothermal limit with constant finite Larmor radius effects are highlighted

    Cluster Dynamical Mean-Field Methods for d-wave Superconductors: the Role of Geometry

    Full text link
    We compare the accuracy of two cluster extensions of Dynamical Mean-Field Theory in describing d-wave superconductors, using as a reference model a saddle-point t-J model which can be solved exactly in the thermodynamic limit and at the same time reasonably describes the properties of high-temperature superconductors. The two methods are Cellular Dynamical Mean-Field Theory, which is based on a real-space perspective, and Dynamical Cluster Approximation, which enforces a momentum-space picture by imposing periodic boundary conditions on the cluster, as opposed to the open boundary conditions of the first method. We consider the scaling of the methods for large cluster size, but we also focus on the behavior for small clusters, such as those accessible by means of present techniques, with particular emphasis on the geometrical structure, which is definitely a relevant issue in small clusters.Comment: 11 pages, 10 figure
    • …
    corecore